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Abstract
The heterogeneity of composite leads to extra charge concentration at the
boundaries of different phases which results in essentially nonzero effective
electric susceptibility. The relation between tensors of effective electric
susceptibility χ̂ef and effective conductivity σ̂ef of the infinite two-dimensional
two-component regular composite with rhombic cell structure has been
established. The degrees of electric field singularity at corner points of cells
are found by constructing the integral equation for the effective conductivity
problem. The limits of weak and strong contrast of partial conductivities
σ1, σ2 are considered. The results are valid for thin films and cylindrical
samples.

PACS numbers: 73.25.+I, 73.40.−c, 73.40.Jn, 73.50.−h, 73.61.−r

1. Introduction

The evaluation of effective properties for two-dimensional (2D) two-component composites,
which determine the behaviour of the medium at large scales, given rise by Keller [1] and
Dykhne [2], remains a topic of high activity. Among different approaches (variational bounds
[3, 4], asymptotic [5, 6], numerical [7], network analogue [8, 9]) used to consider this problem,
the analytical approach, being a classical problem of mathematical physics, is surprisingly
very difficult. Exact values of effective parameters are of great interest even though these
values are established in idealized models. It seems that explicit formulae are available
only as exceptions. Such formulae which solve the field equations were obtained for a two-
component regular checkerboard with square [10], rectangular [11, 12] and triangular [13]
unit cells using complex-variable analysis. Another technique (integral equations) was used
in recent papers dealing with square [14] and triangular [15] regular checkerboards.
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Figure 1. Regular rhombic two-component checkerboard under electric field E0: unit cell (left)
and basic variables for integral equation (right). The distribution of the charges is drawn in
accordance with chosen inequality σ1 � σ2.

Almost all these studies were directed towards effective conductivity σef evaluation
despite the important fact that the heterogeneity contributed to the conducting composite some
dielectric properties. The homogeneous metal does not possess static dielectric properties
(such as electric susceptibility) because only core electrons can contribute there, but their
influence is obviously small. However, heterogeneity leads to extra charge concentration
at the boundaries of different phases, which results in essentially nonzero effective electric
susceptibility χef . The implication follows that a relation between the conductivity σ̂ef and
susceptibility χ̂ef effective tensors must exist.

In the present paper we will consider the regular 2D two-component rhombic checkerboard
and derive such a relation. This middle-symmetric structure belongs to the p′

cmm-plane group
[16] and gives rise to an anisotropy of σ̂ef . In some sense this anisotropic model is more
universal than the regular 2D two-component rectangular checkerboard (c′mm-plane group).
Really, the effective electric properties are mostly determined by the corner points of the cell,
where the electric field is singular [5, 6]. The structure of a composite near these points in a
rhombic checkerboard is governed by an arbitrary angular variable.

2. Integral equation

The regular checkerboard structure is composed of rhombic conducting cells with isotropic
homogeneous conductivities σ1 and σ2, hereafter σ1 � σ2. The backbone of such a structure
can be represented as the set of images of the letter ‘X’ with infinitely long legs, which
are shifted up and down to distance 2N cos α

2 , N = 0,±1,±2, . . .; α is the smallest angle
between legs (see figure 1). The side of the cell is scaled by unit length. Such an arrangement
of the checkerboard allows us to generate the kernel for the integral equation by single series
summation rather than by double summation [14, 15].

We will consider the external unit field E0 be applied in the vertical direction Y. It is one
of the principal axes of the effective material tensors. Another axis X may be considered just
by changing α → π − α.
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Let us proceed with solution of the Laplace equation for a scalar potential φ(r) at the
infinite plane S

φ(r) = −E0y − 4π

∫
S

G(r, r1)ρ(r1) d2r1 G(r, r1) = 1

2π
ln|r − r1| (1)

where G(r, r1) is the two-dimensional Green function and ρ(r) is a charge distribution at the
plane. The boundary conditions at the edge relate normal components of the field En and the
current density jn

E(1)
n − E(2)

n = 4πρ(t) jn(t) = σ1E
(1)
n = σ2E

(2)
n (2)

where a new variable t is introduced to measure the distance along the edge of a unit cell
counted from the cell corner and ρ(t) hereafter is the charge distribution at the edge. The
boundary conditions (2) allow us to write the master equation

E(1)
n + E(2)

n = 4π

Z
ρ(r) Z = σ1 − σ2

σ1 + σ2
0 � Z � 1. (3)

Finding the corresponding derivatives E(i)
n (see appendix A) we come to the integral equation

2πg(t)

Z
ρ(t) = sin

α

2
− 4

∫ +∞

−∞
ρ(t ′)K1(t, t

′) dt ′ (4)

where a new function g(t) reflects a periodic interchange of the constituents (σ1 and σ2) with
variation of argument t

g(t) = sgn[mod(t, 2) − 1] g(−t) = −g(t) g(t) = −1 for 0 < t � 1 (5)

the function mod(t, 2) gives the remainder on division of t by 2 and sgn[x] gives −1, 0 or
1 depending on whether x is negative, zero, or positive. The kernel K1(t, t

′) is given by the
formula

K1(t, t
′) =

+∞∑
k=−∞

[
k

(t − t ′)2 tan α
2 + (t − t ′ − 2k)2 cot α

2

+
k + t ′

(t + t ′)2 tan α
2 + (t − t ′ − 2k)2 cot α

2

]
. (6)

It is worth representing the kernel for further summation as

K1(t, t
′) = 1

4
tan

α

2

+∞∑
k=−∞

[
k

(k − k1)(k − k∗
1)

+
k + t ′

(k − k2)(k − k∗
2)

]
(7)

where the zeros k1, k
∗
1 and k2, k

∗
2 of both denominators in (6) read

k1, k
∗
1 = t − t ′

2
± i

|t − t ′|
2

tan
α

2
k2, k

∗
2 = t − t ′

2
± i

|t + t ′|
2

tan
α

2
. (8)

Making use of the identity

k + t ′

(k − ki)(k − k∗
i )

= Im

(
ki + t ′

k − ki

)
1

Im ki

we can evaluate (7) in the sense of principal value and reduce essentially the kernel of integral
equation (4)

K1(t, t
′) = −π

2
Im

{
k1 cot πk1

|t − t ′| +
(k2 + t ′) cot πk2

|t + t ′|
}

. (9)



5352 L G Fel and I V Kaganov

The further simplification of the kernel K1(t, t
′) can be continued by usage of trigonometry.

Introducing ρ̃(t) = ρ(t)g(t) we obtain finally the integral equation

− 2

Z
ρ̃(t) = − 1

π
sin

α

2
+

∫ +∞

−∞
ρ̃(t ′)K2(t, t

′)g(t ′) dt ′ (10)

where

K2(t, t
′) = tan α

2 sin π(t − t ′) − sinh
(
π(t − t ′) tan α

2

)
cos π(t − t ′) − cosh

(
π(t − t ′) tan α

2

)

+
tan α

2 sin π(t − t ′) − sinh
(
π(t + t ′) tan α

2

)
cos π(t − t ′) − cosh

(
π(t + t ′) tan α

2

) .

The function ρ(t) being a solution of integral equation (10) makes it possible to find an exact
expression of the effective conductivity tensor σ̂ef (see section 4).

3. Asymptotic behaviour of ρ(T ) near the corners

We start this section with two algebraic properties of the function ρ(t), which will be used
in order to simplify further calculation. These are the parity and periodicity of the functions
ρ̃(t), ρ(t), which are following from (10)

ρ̃(−t) = ρ̃(t) ρ̃(t + 2) = ρ̃(t) −→ ρ(−t) = −ρ(t) ρ(t + 2) = ρ(t). (11)

They are in full agreement with the physics of the charge distribution ρ(t) along the edges of
the cells. A proof follows from an accurate evaluation of integral in (10). Indeed, the parity
property follows due to (5) and identity K2(−t,−t ′) = −K2(t, t

′),

2

Z
ρ̃(−t) +

1

π
sin

α

2
= −

∫ −∞

+∞
ρ̃(−t ′)K2(−t,−t ′)g(−t ′) dt ′

=
∫ +∞

−∞
ρ̃(−t ′)K2(t, t

′)g(t ′) dt ′. (12)

The periodicity could be proved in a similar way.
A similar integral equation appeared in [14] for the two-component checkerboard

with square unit cell. Its solution is presented by means of Weierstrass elliptic function
ρsq(t) ∝ ℘κ(t), where sin πκ = Z, and is found by inspection of its behaviour near the
branch points t = 0 and t = 1

E(i)
n (t) ∼ ρsq(t)

t→0∼ 1

t2λ0
E(i)

n (t) ∼ ρsq(t)
t→1∼ (1 − t)2λ1 λ0 = λ1 = κ. (13)

The equality of the exponents λ0 = λ1 is here essential. Already the two-component
checkerboard with triangle unit cell [15] breaks the validity of (13), that made an explicit
unattainable3 solution, but only an efficient approximate method was proposed.

The rhombic structure, discussed in the present paper, also gives rise to distinct exponents.
Asymptotic behaviour of ρ(t) near the branch points t = 0 and t = 1 can be found from the
equation (10) (see appendix A and figure 2)

E(i)
n (t) ∼ ρ(t)

t→0∼ 1

t2µ0
sin πµ0 = Z sin[α + (π − 2α)µ0] (14)

E(i)
n (t) ∼ ρ(t)

t→1∼ (1 − t)2µ1 sin πµ1 = Z sin[α + (2α − π)µ1]. (15)
3 The explicit solution of the effective conductivity problem for the two-component checkerboard composed of
perfect triangles, was obtained in [13] where the conformal mapping of the triangle on the unit circle with a cut was
used.
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Figure 2. The branch point exponents µ0(Z) (dashed line) and µ1(Z) (dot-dashed line) for the
rhombic unit cell with α = π/3. The exponent κ(Z) (full line) for the square unit cell is also
presented.

Then

µ0(Z) = µ1(Z) = κ = 1

π
arcsin Z if α = π

2

µ0(Z) = −µ1(−Z) if α �= π

2

(16)

and for a large contrast in conductivities σ2 � σ1, Z ∼ 1: 2µ0 = 1, 2µ1 = α/(π − α).
This shows that the generic rhombic cell

(
α �= π

2

)
does not lead to the solution of (10),

which can be built out by simple rescaling of Weierstrass elliptic functions. An explicit
solution of the integral equation remains to be performed.

It turns out that the integral equation (10), obtained in the present section, is sufficient
to establish an exact relation between effective electric conductivity σ̂ ef and effective electric
susceptibility χ̂ ef , which was not to our knowledge discussed earlier.

4. Effective susceptibility of a rhombic checkerboard

Let us consider the polarization of the rhombic checkerboard at scales large compared to the
size of the cells. The effective electric susceptibility is the tensor which is defined by P = χ̂efE
where P is polarization and E is external electric field. In the reference frame (figure 1), when
χ̂ef is diagonalized, its y-component is determined by the induced dipole moment dy per unit
square: χ

y

ef = dy/S, where

dy =
∑

over all
charges qj

yjqj = 2 cos
α

2

∞∑
k=−∞

∫ ∞

−∞
(t + 2k)ρ(t) dt (17)

is the dipole moment of area S = LxLy and Lx,Ly are the sizes of a sample. The summation
covers all induced edge-charges qj which are placed within the area S. The sample which is
composed of 2Nx ×2Ny unit cells has the area S = 2Nx 2 sin α

2 ×2Ny 2 cos α
2 = 8NxNy sin α.

Formula (17) can be reduced making use of parity and periodicity properties (11) of ρ(t). Its
accurate evaluation reads

dy = 4Ny cos
α

2

∫ ∞

−∞
tρ(t) dt = 4Ny cos

α

2

n=Nx∑
n=−Nx

∫ 2n+1

2n−1
tρ(t) dt = 8NxNy cos

α

2

∫ 1

−1
tρ(t) dt .
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Taking into account the nonparity (5) of the function g(t) we obtain finally

dy = 16NxNy cos
α

2

∫ 1

0
t ρ̃(t) dt and χ

y

ef = 1

sin α
2

∫ 1

0
t ρ̃(t) dt . (18)

We also define the effective conductivity σef as the ratio of the current J = ∫
jn(t) dt through

the x-cross-section of the checkerboard per unit length to the applied field E0 = 1

σ
y

ef = 4π

sin α
2

σ1σ2

σ1 − σ2

∫ 1

0
ρ̃(t) dt σ x

ef(α) = σ
y

ef(π − α). (19)

Due to Keller [1] the principal values of the tensor σ̂ef satisfy the duality relations

σx
ef(α) · σ

y

ef(α) = σ1σ2. (20)

Relating now two physical quantities (18), (19), we make use of auxiliary integral equation,
obtained by integrating equation (10) (see appendix B)

σ2

σ1 − σ2

∫ 1

0
ρ̃(t) dt = 1

4π
sin

α

2
−

∫ 1

0
t ρ̃(t) dt . (21)

The last relation could be rewritten in new notation (18), (19),

4πχ
y

ef = 1 − σ
y

ef

σ1
and similarly 4πχx

ef = 1 − σx
ef

σ1
. (22)

One can think that σ1, which appeared in (22), breaks the universality of the formulae. Actually,
the denominator contains the maximal value of partial conductivities σmax = max(σ1, σ2).

In fact, we have established the tensorial relation in any reference frame

4πχ̂ef = Î − 1

σmax
σ̂ef (23)

where Î is an identity matrix. Formula (23) results in the particular square-checkerboard case:
4πχx

ef = 4πχ
y

ef = 1 − √
σ2/σ1.

Let us now consider two different cases of weak and large contrast in partial conductivities,

1. (σ1 − σ2)/σ1 � 1, or Z � 1:
In first order on Z the integral equation (10) gives according to definition (19)

ρ(t) = − Z

2π
sin

α

2
−→ σx

ef = σ
y

ef = σ1(1 − Z) (24)

and therefore

4πχx
ef = 4πχ

y

ef = Z. (25)

2. σ2 � σ1:
In this limit the corner points t → 0 of the cell become important. Making use of the
distribution (14) for the fields and charge E(i)

n ∼ ρ̃(t) ∼ t−2µ0 one can find approximately
in leading terms

µ0 = 1

2
− 1√

α(π − α)

√
σ2

σ1
−→ σ

y

ef = A
√

σ1σ2. (26)

Actually, the coefficient was found in [6]: A = √
α/(π − α) cot(α/2). Formula (26)

implies as well

4πχx
ef = 1 − A

√
σ2

σ1
4πχ

y

ef = 1 − 1

A

√
σ2

σ1
. (27)
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5. Conclusion

1. We have derived the integral equation for the effective conductivity problem for the regular
2D two-component rhombic checkerboard. Asymptotic behaviour of the electric field was
investigated near the singular points t = 0 and t = 1.

2. The heterogeneity of composite leads to extra charge concentration at the boundaries of
different phases that results essentially in nonzero effective electric susceptibility. The
exact relation (23) between the two most important electrical properties, namely, effective
conductivity σ̂ef and effective susceptibility χ̂ef, of the rhombic composite was established.
An absence of specific angular parameter α in this formula makes it possible to conjecture
its validity for any anisotropic two-component structure. It is shown that the tensor of
electrical susceptibility has surprisingly simple structure in both cases of large and small
contrast in partial conductivities σ1, σ2.

3. The relation derived in the present paper is definitely valid for cylindrical samples. It is
also valid for thin films due to the conducting nature of the constituents, which confine
the electric field inside the conductor.

4. The electrical and magnetic properties of composites present current practical
interest. These are mostly artificial mixtures (see e.g. [17]). Advances in technology
permit the design of two-dimensional periodic composites even on a submicron scale
[18]. Therefore, the relation (23) is of worth in the case when the direct measurement of
the effective electric properties is difficult. On the other hand, if both effective electric
susceptibility and conductivity are known, the relation allows one to get microscopic
information, i.e. the conductivity of one of the constituents. It also may be used as a basic
approximation for some kind of perturbation theory when the shape of cells is deviating
from rhombic structure insignificantly. However, we conjecture that the relation is valid
for any kind of two-component flat structure.
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Appendix A. Derivation of integral equation (4). Behaviour of its solution near the
branch points

We define the variables

x = t sin
α

2
y = t cos

α

2
x ′ = ±t ′ sin

α

2
y ′ = t ′ cos

α

2
+ 2k cos

α

2
(A.1)

and normal vector to the edge

n =
(

cos
α

2
,−sin

α

2

)
. (A.2)

Here k is an ordinal number of the ‘X’ image. Keeping in mind the contributions
from both left (l) and right (r) edges of the rhombic tile we will find the derivative
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∂φ/∂n = (n∇)φ

−∂φ

∂n
= E0 sin

α

2
+

∞∑
k=−∞

∫ ∞

−∞
dt ′ρ(t ′)

1

r2
r (t, t ′)

(
∂r2

r (t, t
′)

∂n

)

+
∞∑

k=−∞

∫ ∞

−∞
dt ′ρ(t ′)

1

r2
l (t, t ′)

(
∂r2

l (t, t ′)
∂n

)

which leads after simple algebra to the equation

1

2

(
E(1)

n + E(2)
n

) = −E0 sin
α

2
+ 4

∫ ∞

−∞
ρ(t ′)K1(t, t

′) dt ′ (A.3)

where the kernel K1(t, t
′) reads

K1(t, t
′) =

∞∑
k=−∞

[
k

(t − t ′)2 tan α
2 + (t − t ′ − 2k)2 cot α

2

+
t ′ + k

(t + t ′)2 tan α
2 + (t − t ′ − 2k)2 cot α

2

]
. (A.4)

Taking now E0 = 1 we arrive at (4).
Below we consider the asymptotic behaviour of ρ(t) near the branch points t = 0 and

t = 1.

• t −→ 0
Let us assume the power behaviour ρ(t) ∝ |t|−2µ0 sgn(t) and look for the exponent µ0.

The main singularity comes from the integral in (10) in the vicinity t ′ −→ 0. The kernel
K2 behaves as

K2(t, t
′)

t,t ′→0−→ 4

π

t ′ tan α
2

(t − t ′)2 + (t + t ′)2 tan2 α
2

(A.5)

that gives the asymptotic behaviour

ρ(t)

Z
= 1

π
sin α

∫ +∞

−∞

dt ′t ′ρ(t ′)
t2 + (t ′)2 − 2t t ′ cos α

.

Defining a new variable z = t ′/t we obtain

π

Z sin α
=

∫ +∞

0

dz z1−2µ0

1 + z2 − 2z cos α
+

∫ +∞

0

dz z1−2µ0

1 + z2 + 2z cos α
. (A.6)

The evaluation of the last expression is based on the primitive fraction expansion with
further usage of standard integrals and gives finally (14).

• t −→ 1
Let us assume the power behaviour ρ(t) ∝ |1 − t|2µ1 sgn(1 − t) and look for the

exponent µ1. It is convenient to define new variables τ = 1 − t, τ ′ = 1 + t ′ and consider
the vicinity of the branch point τ → 0, so ρ(t) ∝ |τ |2µ1 sgn(τ ). In order to deal with a
singular part of the integral equation (10) let us differentiate the last over t

2

Z

dρ(t)

dt
=

∫ +∞

−∞
ρ(t ′)

dK2(t, t
′)

dt
dt ′ where

dρ(t)

dt
∝ −2µ1(1 − t)2µ1−1. (A.7)

The main singularity comes from the integral in (A.7) in the vicinity t ′ → 1, or τ ′ → 0,
where the kernel behaves as

dK2(t, t
′)

dt

τ,τ ′→0−→ −4 sin α

π

τ ′(τ + τ ′ cos α)

(τ 2 + (τ ′)2 + 2ττ ′ cos α)2
. (A.8)



Relation between effective conductivity and susceptibility of two-component rhombic checkerboard 5357

Defining a new variable v = τ ′/τ we obtain

πµ1

Z sin α
=

∫ +∞

0

dv v2µ1+1(1 + v cos α)

(1 + v2 + 2v cos α)2
+

∫ +∞

0

dv v2µ1+1(1 − v cos α)

(1 + v2 − 2v cos α)2
. (A.9)

Evaluating the last integrals we arrive at (15).

Appendix B. Derivation of integral equation (21)

Recalling that the equation (10) is written in the sense of the principal integral value therein,
we average this equation over the large interval [−M,M], taking afterwards its limit M → ∞

1

2M

∫ M

−M

[
− 2

Z
ρ̃(t) +

1

π
sin

α

2

]
dt = 1

2M

∫ M

−M

dt

∫ +M

−M

ρ̃(t ′)K2(t, t
′)g(t ′) dt ′ (B.1)

where due to (11) the left-hand side reads

− 2

Z

∫ 1

0
ρ̃(t) dt +

1

π
sin

α

2
(B.2)

while the right-hand side could be simplified. Indeed, let us represent the kernel K2(t, t
′) as

follows:

K2(t, t
′) =

(
tan α

2 + cot α
2

)
sin π(t − t ′)

cos π(t − t ′) − cosh
[
π(t + t ′) tan α

2

] +

(
tan α

2 + cot α
2

)
sin π(t − t ′)

cos π(t − t ′) − cosh
[
π(t − t ′) tan α

2

]
+

1

π
cot

α

2

d

dt
ln

{
cos π(t − t ′) − cosh

[
π(t − t ′) tan

α

2

]}

+
1

π
cot

α

2

d

dt
ln

{
cos π(t − t ′) − cosh

[
π(t + t ′) tan

α

2

]}
. (B.3)

The last three terms do not contribute to integration of the kernel over t, while the first term
implies

− 2

Z

∫ 1

0
ρ̃(t) dt +

1

π
sin

α

2
= 1

2M

∫ M

−M

∫ M

−M

ρ̃(t ′)K3(t, t
′)g(t ′) dt ′ dt (B.4)

where

K3(t, t
′) = 2

sin α

sin πt

cos πt − cosh
(
π(2t ′ + t) tan α

2

)
= − 2

sin α
Re

{
cot

π

2

[
t + i(2t ′ + t) tan

α

2

]}
. (B.5)

Continuing the integration of the kernel K3(t, t
′) we note that the function

F(t ′) = lim
M→∞

∫ +M

−M

K3(t, t
′) dt (B.6)

is a 1-periodic function: F(t ′ + 1) = F(t ′), which follows from the structure of the kernel
K3(t, t

′). Evaluating the integral in (B.6) we arrive at the following:

F(t ′) = 2(1 − 2t ′) for 0 � t ′ � 1. (B.7)

The final integral equation

2

(
1 − 1

Z

) ∫ 1

0
ρ̃(t) dt +

1

π
sin

α

2
= 4

∫ 1

0
t ρ̃(t) dt (B.8)

leads already to (21).
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